EE 330 Lecture 42

Digital Circuits

- Propagation Delay with Various Sizing
- Optimally driving large capacitive loads
- Logic Effort Method for Signal Propagation

Fall 2024 Exam Schedule

Exam 1FridayExam 2FridayExam 3FridayFinal ExamMondayPM

Sept 27 October 25 Nov 22 Dec 16 12:00 - 2:00

 $C_{IN} = C_{OX} (W_1 L_1 + W_2 L_2)$

Scaling widths of ALL devices by constant will change FI_{IN} to gate by OD

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Propagation Delay with Over-drive Capability

Compare the propagation delays. Assume the OD is 900 in the third case and 30 in the fourth case. Don't worry about the extra inversion at this time.

t_{PROP}=900t_{REF}

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} + \mathbf{900t}_{\mathsf{REF}} = \mathbf{901t}_{\mathsf{REF}}$$

 $\mathbf{t}_{\mathsf{PROP}} \texttt{=} \textbf{900t}_{\mathsf{REF}} + \mathbf{t}_{\mathsf{REF}} = \textbf{901t}_{\mathsf{REF}}$

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{30t}_{\mathsf{REF}} + \mathbf{30t}_{\mathsf{REF}} = \mathbf{60t}_{\mathsf{REF}}$

- Dramatic reduction in t_{PROP} is possible (input is driving same in all 3 cases)
- Will later determine what optimal number of stages and sizing is

Propagation Delay in Multiple-Levels of Logic with Stage Loading

Will consider an example with the five cases

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

Will develop the analysis methods as needed

Propagation Delay in Multiple-Levels of Logic with Stage Loading and Overdrives

Will now consider A to F propagation for this circuit as an <u>example</u> with different overdrives

Propagation Delay in Multiple-Levels of Logic with Stage Loading

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

t_{PROP} = ?

Review from Last Time Equal rise-fall gates, no overdrive

In 0.5u proc t_{REF}=20ps, C_{REF}=4fF,R_{PDREF}=2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

A Coverdrive)

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

$$t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$$
$$t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$$

t_{PROP} = ?

Equal rise-fall gates, with overdrive

In 0.5u proc t_{REF} =20ps, C_{REF} =4fF, R_{PDREF} =2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

Equal rise-fall gates, with overdrive

Equal rise-fall gates, with overdrive

than that in the 0.5u ON process)

Minimum-sized gates

In 0.5u proc t_{REF} =20ps, C_{REF}=4fF,R_{PDREF}=2.5K

(Note: This C_{OX} is somewhat larger than that in the 0.5u ON process)

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$$

• Equal rise/fall (no overdrive)

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

 $t_{PROP} = t_{REF} \sum_{k=1}^{n} FI_{(k+1)}$ $t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}}$

t_{PROP}= ?

$$\mathbf{t}_{\text{PROP}} = \mathbf{t}_{\text{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\text{I}(k+1)} \left(\frac{1}{\mathbf{OD}_{\text{HLk}}} + \frac{1}{\mathbf{OD}_{\text{LHk}}} \right) \right)$$

 $t_{PROP} = ?$

Minimum-sized gates

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$

Observe that a minimum-sized gate is simply a gate with asymmetric overdrive

Propagation Delay with Minimum-Sized Gates

Recall propagation delay for asymmetric overdrive:

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

Thus for minimum-sized devices:

$$\frac{\mathbf{t}_{\mathsf{PROP}}}{\mathbf{t}_{\mathsf{REF}}} = \left(\frac{1}{2}\sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)}\left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}}\right)\right)$$

- Still need OD_{HL} and OD_{LH} for minimum-sized gates
- Still need FI for minimum-sized gates

Propagation Delay with minimum-sized gates

Minimum-sized gates

Minimum-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized
$C_{\text{IN}}/C_{\text{REF}}$			
Inverter	1	OD	1/2
NOR	$\frac{3k+1}{4}$	$\frac{3k+1}{4} \bullet OD$	1/2
NAND	$\frac{3+k}{4}$	$\frac{3+k}{4} \bullet OD$	1/2
Overdrive			
Inverter HL	1	OD	1
LH	1	OD	1/3
NOR HL	1	OD	1
LH	1	OD	1/(3k)
NAND HL	1	OD	1/k
LH	1	OD	1/3
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$	$\frac{1}{2}\sum_{k=1}^{n}F_{I(k+1)}\left(\frac{1}{OD_{HLk}}+\frac{1}{OD_{LHk}}\right)$

• Equal rise/fall (no overdrive)

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$ $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$

 $t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD}$

t_{PROP}= ?

Asymmetric-sized gates

Asymmetric-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD
C_{IN}/C_{REF}				
Inverter	1	OD	1/2	?
NOR	$\frac{3k+1}{4}$	$\frac{3k+1}{4} \bullet OD$	1/2	?
NAND	$\frac{3+k}{4}$	$\frac{3+k}{4} \bullet OD$	1/2	?
Overdrive				
Inverter HL	1	OD	1	OD _{HL}
LH	1	OD	1/3	OD _{LH}
NOR HL	1	OD	1	OD _{HL}
LH	1	OD	1/(3k)	OD _{LH}
NAND HL	1	OD	1/k	OD _{HL}
LH	1	OD	1/3	OD _{LH}
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$	$\frac{1}{2}\sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$	$\frac{1}{2}\sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$
$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \bullet \left(\frac{1}{2} \sum_{k=1}^{5} \mathbf{F}_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right) \right)$				

Asymmetric-sized gates C_{IN}/C_{REF}

Inverter

VDD

NOR

NAND

Vout

M_{1k}

Asymmetric-sized gates C_{IN}/C_{RFF}

Asymmetric-sized gates

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD (OD _{HL} , OD _{LH})
$C_{\text{IN}}/C_{\text{REF}}$				
Inverter	1	OD	1/2	$\frac{OD_{HL}+3 \bullet OD_{LH}}{4}$
NOR	$\frac{3k+1}{4}$	$\frac{3k+1}{4} \bullet OD$	1/2	OD _{HL} +3k ● OD _{LH}
NAND	$\frac{3+k}{4}$	$\frac{3+k}{4} \bullet OD$	1/2	$\frac{4}{\frac{k \bullet OD_{HL} + 3 \bullet OD_{LH}}{4}}$
Overdrive				
Inverter HL	1	OD	1	OD _{HL}
LH	1	OD	1/3	OD _{LH}
NOR HL	1	OD	1	OD _{HL}
LH	1	OD	1/(3k)	OD _{LH}
NAND HL	1	OD	1/k	OD _{HL}
LH	1	OD	1/3	
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$	$\frac{1}{2}\sum_{k=1}^{n} \mathbf{F}_{I(k+1)} \left(\frac{1}{\mathbf{OD}_{HLk}} + \frac{1}{\mathbf{OD}_{LHk}} \right)$	$\frac{1}{2}\sum_{k=1}^{n} F_{l(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}}\right)$
$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \bullet \left(\frac{1}{2} \sum_{k=1}^{5} \mathbf{F}_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right) \right)$				

Asymmetric-sized gates

• Equal rise/fall (no overdrive)

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric Overdrive
- Combination of equal rise/fall, minimum size and overdrive

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$ $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$

 $t_{PROP} = t_{REF} \sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD}$

t_{PROP}= ?

Mixture of Minimum-sized gates, equal rise/fall gates and OD

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet ?$

Driving Notation

- Equal rise/fall (no overdrive)
- Equal rise/fall with overdrive
- Minimum Sized

OD _

OD

Asymmetric Overdrive

OD >-

Mixture of Minimum-sized gates, equal rise/fall gates and OD

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{5} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$$

Mixture of Minimum-sized gates, equal rise/fall gates and OD

- Equal rise/fall with overdrive
- Minimum Sized
- Asymmetric overdrive
- Combination of equal rise/fall, minimum size and overdrive

 $\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \frac{\mathbf{F}_{\mathsf{I}(k+1)}}{\mathbf{OD}_{k}}$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HL}k}} + \frac{1}{\mathsf{OD}_{\mathsf{LH}k}} \right) \right)$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \bullet \left(\frac{1}{2} \sum_{k=1}^{n} \mathbf{F}_{\mathsf{I}(k+1)} \left(\frac{1}{\mathsf{OD}_{\mathsf{HLk}}} + \frac{1}{\mathsf{OD}_{\mathsf{LHk}}} \right) \right)$$

	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	Asymmetric OD (OD _{HL} , OD _{LH})
$C_{\text{IN}}/C_{\text{REF}}$				
Inverter	1	OD	1/2	OD _{HL} +3•OD _{LH}
NOR	$\frac{3k+1}{4}$	$\frac{3k+1}{4} \bullet OD$	1/2	4 OD _{HL} +3k ● OD _{LH}
NAND	$\frac{3+k}{4}$	$\frac{3+k}{4} \bullet OD$	1/2	$\frac{4}{k \bullet OD_{HL} + 3 \bullet OD_{LH}}$
Overdrive				т
Inverter HL	1	OD	1	OD _{HL}
LH	1	OD	1/3	OD_{LH}
NOR HL	1	OD	1	OD _{HL}
LH	1	OD	1/(3k)	OD _{LH}
NAND HL	1	OD	1/k	OD _{HL}
LH	1	OD	1/3	OD _{LH}
t _{PROP} /t _{REF}	$\sum_{k=1}^{n} \mathbf{F}_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{l(k+1)}}{OD_{k}}$	$\frac{1}{2}\sum_{k=1}^{n} F_{I(k+1)} \left(\frac{1}{OD_{HLk}} + \frac{1}{OD_{LHk}} \right)$	$\frac{1}{2}\sum_{k=1}^{n} \mathbf{F}_{I(k+1)} \left(\frac{1}{\mathbf{OD}_{HLk}} + \frac{1}{\mathbf{OD}_{LHk}} \right)$

Digital Circuit Design

- Hierarchical Design
- Basic Logic Gates
- Properties of Logic Families
- Characterization of CMOS Inverter
- Static CMOS Logic Gates
 - 🔶 Ratio Logic
- Propagation Delay
 - Simple analytical models
 - FI/OD
 - Logical Effort
 - Elmore Delay
 - Sizing of Gates

The Reference Inverter

 Propagation Delay with Multiple Levels of Logic

- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
 - Other Logic Styles
 - Array Logic
 - Ring Oscillators

Example

Assume C₁=1000C_{RFF}

Assume driving by a reference inverter

t_{PROP}=?

Example

Assume driving by a reference inverter

t_{PROP}=1000t_{REF}

t_{PROP} is too long !

Assume C_L=1000C_{REF}

Example

Assume C_L=1000C_{REF}

Assume first stage is a reference inverter

t_{PROP}=?

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{2} \frac{\mathbf{F}_{\mathsf{I}(k+1)}}{\mathsf{OD}_{\mathsf{k}}}$$
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \left(\frac{1}{1} 1000 + \frac{1}{1000} 1000 \right) = \mathbf{t}_{\mathsf{REF}} \left(1000 + 1 \right)$$
$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \left(1001 \right)$$

Delay of second inverter is really small but overall delay is even longer than before!

Example

Assume C_L=1000C_{REF}

Dramatic reduction is propagation delay (over a factor of 30!)

What is the fastest way to drive a large capacitive load?

Need to determine the number of stages, n, and the OD factors for each stage to minimize t_{PROP} .

where $\theta_0 = 1$, $\theta_n = C_L / C_{REF}$

This becomes an n-parameter optimization (minimization) problem !

Unknown parameters: $\{\theta_1, \theta_2, ..., \theta_{n-1}, n\}$

An n-parameter nonlinear optimization problem is generally difficult !!!!

Order reduction strategy : Assume overdrive of stages increases by the same factor clear until the load

This becomes a 2-parameter optimization (minimization) problem ! Unknown parameters: $\{\theta, n\}$

One constraint : $\theta^{n}C_{REF} = C_{L}$

One degree of freedom

f

It suffices to minimize the function $\frac{df}{d\theta} = \frac{\ln(\theta) - \theta \cdot \left(\frac{1}{\theta}\right)}{\left(\ln(\theta)\right)^2} = 0$

$$(\theta) = \frac{\theta}{\ln(\theta)}$$

 $\ln(\theta) - 1 = 0 \rightarrow \theta = e$

$$n = \frac{1}{\ln(\theta)} \ln\left(\frac{C_{L}}{C_{REF}}\right) \rightarrow n = \ln\left(\frac{C_{L}}{C_{REF}}\right) = \ln(FI_{L})$$

- Since $\theta_{OPT} = e$ is an irrational number, snap-size limitations in layout tools make it impossible to use the optimal scaling factor (even if n comes out to be an integer).
- Need a practical solution

A practical solution

- minimum at θ =e but shallow inflection point for 2< θ <3
- practically pick θ =2, θ =2.5, or θ =3
- since optimization may provide non-integer for n, must pick close integer

- Often termed a pad driver
- Often used to drive large internal busses as well
- Generally included in standard cells or in cell library
- Device sizes can become very large
- Odd number of stages will cause signal inversion but usually not a problem

Example: Design a pad driver for driving a load capacitance of 10pF with equal rise/fall times, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

$$In 0.5u \text{ proc } t_{REF}=20\text{ps}, \qquad FI = 2500$$

$$In O_{REF}=4fF, R_{PDREF}=2.5K \qquad FI = 2500$$

$$In OPT = In \left(\frac{C_{L}}{C_{REF}}\right) = In \left(\frac{10\text{pF}}{4\text{fF}}\right) = In (2500) = 7.8$$
Select n=8, 0=2.5

$$W_{nk} = 2.5^{k-1} \bullet W_{REF}, \qquad W_{pk} = 3 \bullet 2.5^{k-1} \bullet W_{REF}$$

Example: Design a pad driver for driving a load capacitance of 10pF with equal rise/fall times, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

In 0.5u proc t_{REF} =20ps, C_{REF}=4fF,R_{PDREF}=2.5K

For
$$\theta = 2.5$$
, n=8 W_{REF}=W_{MIN}
W_{nk}=2.5^{k-1}•W_{REF}, W_{pk}=3•2.5^{k-1}•W_{REF}

┗'n¯┗p¯┗MIN					
k	n-channel		p-channel		I
1	1	WMIN		3	WMIN
2	2.5	WMIN		7.5	WMIN
3	6.25	WMIN		18.75	WMIN
4	15.6	WMIN		46.9	WMIN
5	39.1	WMIN		117.2	WMIN
6	97.7	WMIN		293.0	WMIN
7	244.1	WMIN		732.4	WMIN
8	610.4	WMIN		1831.1	WMIN

L

—I

Note devices in last stage are very large !

Example: Design a pad driver for driving a load capacitance of 10pF with equal rise/fall times, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

 $\begin{array}{ll} \text{In 0.5u proc } t_{\text{REF}} = 20\text{ps}, \\ C_{\text{REF}} = 4\text{fF}, R_{\text{PDREF}} = 2.5\text{K} \\ \end{array} \quad W_{nk} = 2.5^{k-1} \bullet W_{\text{REF}}, \quad W_{pk} = 3 \bullet 2.5^{k-1} \bullet W_{\text{REF}} \\ t_{\text{PROP}} \cong & n\Theta t_{\text{REF}} = 8 \bullet 2.5 \bullet t_{\text{REF}} = 20t_{\text{REF}} \\ \end{array}$

More accurately:

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \left(\sum_{k=1}^{7} \theta + \frac{1}{\theta^{7}} \frac{\mathbf{C}_{\mathsf{L}}}{\mathbf{C}_{\mathsf{REF}}} \right) = \mathbf{t}_{\mathsf{REF}} \left(17.5 + \frac{1}{610} 2500 \right) = 21.6 \mathbf{t}_{\mathsf{REF}}$$

More accurately:

$$t_{\text{PROP}} = t_{\text{REF}} \left(\sum_{k=1}^{7} \theta + \frac{1}{\theta^{7}} \frac{C_{\text{L}}}{C_{\text{REF}}} \right) = t_{\text{REF}} \left(17.5 + \frac{1}{610} 2500 \right) = 21.6 t_{\text{REF}}$$

Possible modest improvement for determining n and θ after determining n_{opt} :

Consider all possible combinations of θ in { 2 , 2.5 , 3} and n in { $INT(n_{opt}),$ 1+INT(n_{opt})}

$$t_{\mathsf{PROP}}\left(\theta,n\right) = t_{\mathsf{REF}}\left(\sum_{k=1}^{n-1}\theta + \frac{1}{\theta^{n-1}}\frac{C_{\mathsf{L}}}{C_{\mathsf{REF}}}\right) = t_{\mathsf{REF}}\left(\left(n-1\right)\theta + \frac{1}{\theta^{n-1}}\mathsf{FI}_{\mathsf{L}}\right)$$

Example: Design a pad driver for driving a load capacitance of 10pF with equal rise/fall times, determine t_{PROP} for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

In 0.5u proc $t_{REF}=20ps$, $C_{REF}=4fF, R_{PDREF}=2.5K$ $W_{nk}=2.5^{k-1} \bullet W_{REF}$, $W_{pk}=3 \bullet 2.5^{k-1} \bullet W_{REF}$

If driven directly with the minimum-sized reference inverter

$$t_{PROP} = t_{REF} \frac{C_L}{C_{REF}} = 2500 t_{REF}$$

Note an improvement in speed by a factor of approximately

$$r = \frac{2500}{20} = 125$$

Pad Driver Size Implications

Consider a 7-stage pad driver and assume \theta = 3 The a of Ref Inverter

Area of Last Stage Larger than that of all previous stages combined!

(Discussed in Chapter 4 of Text but definitions are not rigorous)

Logical effort

From Wikipedia, the free encyclopedia (Dec 8, 2021)

The method of **logical effort**, a term coined by Ivan Sutherland and Bob Sproull in 1991, is a straightforward technique used to estimate delay in a CMOS circuit. Used properly, it can aid in selection of gates for a given function (including the number of stages necessary) and sizing gates to achieve the minimum delay possible for a circuit.

(Discussed in Chapter 4 of Text but definitions are not rigorous)

Propagation delay for equal rise/fall gates was derived to be

$$t_{\text{PROP}} = t_{\text{REF}} \sum_{k=1}^{n} \frac{F_{I(k+1)}}{OD_{k}}$$

Delay calculations with "logical effort" approach

Logical effort delay approach:

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{f}_{k}$$

(t_{REF} scaling factor not explicitly stated in W_H textbook. As defined in W_H, f_k is dimensionless)

where f_k is the "effort delay" of stage k

g_k=logical effort

h_k=electrical effort

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{f}_{k} \qquad \mathbf{f}_{k} = \mathbf{g}_{k} \mathbf{h}_{k}$$

f_k = "effort delay" of stage k

g_k=logical effort

h_k=electrical effort

Logic Effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter that can deliver the same output current

Electrical Effort is the ratio of the gate load capacitance to the input capacitance of a gate

$$\mathbf{t}_{PROP} = \mathbf{t}_{REF} \sum_{k=1}^{n} \mathbf{f}_{k} \qquad \mathbf{f}_{k} = \mathbf{g}_{k} \mathbf{h}_{k}$$

Logic Effort (g) is the ratio of the input capacitance of a gate to the input capacitance of an inverter that can deliver the same output current

Electrical Effort (h) is the ratio of the gate load capacitance to the input capacitance of a gate

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{f}_{k} \qquad \mathbf{f}_{k} = \mathbf{g}_{k} \mathbf{h}_{k}$$

$$f_k = \frac{F_{i(k+1)}}{OD_k}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{f}_{k} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{g}_{k} \mathbf{h}_{k} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \frac{\mathbf{F}_{\mathsf{I}(\mathsf{k+1})}}{\mathbf{OD}_{k}}$$

$$\mathbf{t}_{\mathsf{PROP}} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{f}_{k} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \mathbf{g}_{k} \mathbf{h}_{k} = \mathbf{t}_{\mathsf{REF}} \sum_{k=1}^{n} \frac{\mathbf{F}_{\mathsf{I}(\mathsf{k+1})}}{\mathsf{OD}_{k}}$$

- Note this expression is identical to what we have derived previously (t_{REF} scaling factor not included in W_H text)
- Probably more tedious to use the "Logical Effort" approach
- Extensions to asymmetric overdrive factors may not be trivial
- Extensions to include parasitics may be tedious as well
- Logical Effort is widely used throughout the industry

Stay Safe and Stay Healthy !

End of Lecture 42